2.5b Uses for Determinants

We can use determinants for more than just Cramer's Rule.
Area of a Triangle The area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ choose the is given by: is given by: all the x-coordinates sign that
 of the vertices \leftarrow ard column is always all 1's.
all the y-coordinates of the vertices
Example 1 Find the area of a triangle whose vertices are (1, 0), (2, 2), and $(4,3)$

Area $\pm \frac{1}{2} \left\lvert\, \begin{array}{ll}1 & 0 \\ 2 & 2 \\ 4 & 2 \\ 2 & 2 \\ 2\end{array}\right.$

$$
\begin{aligned}
& 8-11=-3 \\
& -\frac{1}{2} \cdot(-3)=\frac{3}{2} u^{2}
\end{aligned}
$$

$$
2+0+6=8 \text { or } 1.5 u^{2}
$$

Test for Collinear Points Three points are collinear if and only if:

Example 2 Determine whether the points $(-2,-2),(1,1)$, and $(7,5)$ are collinear.

$$
\text { Area }=-\frac{1}{2}(-6)=3 u^{2}
$$

If the points are collinear, you may want to find the equation of the line that they are on. Once again, you can use determinants.

Two Point Form of the Equation of a Line (Standard form $A x+B y+C=0$)
An equation for the line passing through the distinct points, $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given by evaluating:

Ex 3 Find an equation for the line passing through the two points $(2,4)$ and $(-1,3)$.

$$
\begin{gathered}
(4 x-1 y+6)-1(-4+3 x+2 y) \\
4 x-y+6+4-3 x-2 y=0 \\
x-3 y+10=0
\end{gathered}
$$

